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Abstract

Existing studies on reactive-extractive distillation (RED) commonly misapply optimization 
variables by including reaction stages. Given the uncatalyzed nature of ethylene oxide (EO) 
hydration in RED, where it naturally occurs throughout the column, a more appropriate strategy 
is to optimize only the total stages, allowing the reactive stage to align accordingly. However, 
previous attempts to implement this approach faced challenges. Here we introduce an algorithm 
addressing the variable overlap issue in optimizing RED, exemplified in two case studies. In 
Case 1, we explored a distinct scenario where the original process designated a specific reaction 
zone. Adjustments were made to ensure the reaction occurred throughout the entire column but 
it leads to a 13% total annual cost (TAC) increase compared to the base case. In Case 2, 
optimization was applied to a system where reaction were distributed throughout the column 
without prior optimization, yielding a marginal 3.87% reduction in the TAC. 
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1.0. Introduction

Over the past three years, the hybrid reactive-extractive distillation (RED) has emerged as an 
increasingly popular and innovative method for azeotropic mixture separation. Unlike 
traditional processes where the reaction and distillation steps are commonly carried out 
sequentially, RED integrates chemical reaction and physical separation into a single unit 
operation, akin to reactive distillation (RD). To enhance the separation of azeotropic mixtures, 
RED introduces an additional solvent through external injection that alters relative volatility, 
which makes it differ from the RD. A notable application of this approach was pioneered by 
Su et al. [1], employing a three-column RED (TCRED) to separate a tetrahydrofuran (THF), 
ethanol (Eth), and water ternary azeotropic mixture. In their TCRED system, the first column 
is a RD column that utilizes the hydration interaction between ethylene oxide (EO) and water, 
yielding ethylene glycol (EG) without the need for a catalyst, a highly advantageous feature in 
reactive-based distillation. The remaining azeotropic mixture containing THF and Eth is 
directed to the second and third columns of the extractive distillation (ED) process. Compared 
to the original pressure swing distillation (PSD) for the same separation mixture [2], they 
reported a remarkable reductions in the total annual cost (TAC) and carbon dioxide (CO2) 
emission by about 60 to 80%.

Following the introduction of TCRED, the RED concept gained momentum, leading to 
the development of various RED configurations. One notable advancement is the double 
column reactive-extractive distillation (DCRED), which unites both RD and ED within a single 
column known as the reactive-extractive distillation column (REDC). In this configuration, the 
fresh feed, reactant, and solvent are introduced simultaneously, and the resulting EG serves as 
a solvent for facilitating the separation of azeotropic mixtures. Wang et al. [3] demonstrated 
the effectiveness of DCRED in separating a ternary azeotropic mixture comprising ethyl 
acetate (EA), Eth, and water. Their simulations revealed an additional 20% to 35% 
improvement in TAC and CO2 emissions compared to TCRED. Notably, when comparing 
DCRED with conventional distillation processes like the triple column ED, the improvements 
are even more substantial, ranging from 50% to 100%. This demonstrates the considerable 
potential of RED configurations in advancing separation processes. As a result of the successful 
introduction of DCRED, several subsequent studies have also explored the application of 
DCRED for the separation of other ternary azeotropic mixture such as cyclohexane 
(CY)/isopropanol (IPA)/water  [4], benzene/IPA/water [5], and IPA/EA/water [6].

In addition to TCRED and DCRED, several studies have explored other intensified 
RED systems, such as thermally coupled RED (TC-RED) [7], side-stream RED (SS-RED) [8], 
and dividing-wall RED (DWRED) [9], to further enhance the separation process performance 
of RED. These studies are comprehensively summarized in Table 1, which will be presented 
in Section 2 to maintain the logical flow of this study. Moreover, for interested readers, detailed 
information regarding these various RED configurations can be found in our previous review 
[10,11]. Other than that, studies have also begun to explore the potential applications of RED 
in the production of various chemicals, such as isopropyl acetate [12], n-butyl acetate [13], and 
in transesterification reactions [14]. Such increasing popularity of RED research reflects its 
significance and effectiveness, and it is anticipated that more studies on RED will continue to 
emerge in the coming years.

Despite the various advantages reported in existing literature, it is essential to note that 
some research endeavors have also ventured into exploring potential side reactions within the 
RED system [15,16], driven by the objective of uncovering the drawbacks and limitations of 
the RED system. Apart from the inevitable side reactions, another significant gap in the existing 
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body of RED studies pertains to the optimization algorithm. As such, the primary focus of this 
work revolves around optimizing RED, where we aim to address several associated challenges, 
as detailed in Section 2. The remainder of this manuscript follows this structure: Section 3 
elaborates on the case studies and the methodology employed in this research. Section 4 is 
dedicated to presenting and discussing the results. Lastly, Section 5 provides recommendations 
for future work and concludes this study.

2.0. Problem statement

Table 1 shows the summary of studies done on RED for ternary azeotropic mixture containing 
information such as the components in mixture, optimization objective, and algorithm. Here, 
we aim to address and discuss two specific challenges.

1. From Table 1, one important observation made was that the majority of the existing 
studies have carried out process optimization based on minimum cost (i.e., TAC) as the 
objective function to obtain the optimal column configuration. There are various 
optimization algorithm being employed, i.e., genetic algorithm (GA), multi-objective 
genetic algorithm (MOGA), multi-objective particle swarm optimization (MOPSO), 
sequential iterative optimization (SIO), non-dominated sorting genetic algorithm-II 
(NSGA-II), and particle swarm optimization (PSO). The optimization variables 
generally include the solvent flow rate, total number of trays, feed locations, reflux 
ratios, reboiler duties, operating pressures, purge flow rate, liquid holdup, and reactive 
stages. However, it is important to remember that the hydration reaction of EO is an 
uncatalyzed reaction, and the reaction is expected to take place throughout the entire 
column [17]. Thus, it is not necessary to include the reactive stages as one of the 
optimization variables, but most of the existing studies have done so. Although there 
are two studies in Table 1 that allow the reaction to take place throughout the column 
[4,17], it is important to highlight that no optimization was carried out in Ref. [17], and 
the authors set the reaction to take place throughout the entire column. In Ref. [4], the 
authors relied on a more simplified optimization algorithm due to the complexity of 
their process under study. In fact, the most appropriate way for process optimization in 
this case is to optimize only the total number of stages, and the reactive stage should 
generally follow the total number of stages, which is not the case in most of the existing 
studies. However, such optimization is difficult to carry out due to the variable overlap 
issue between MATLAB and Aspen Plus.

2. According to Zhang et al. [17], the holdup for the top (i.e., condenser) and last (i.e., 
reboiler) should be 10 times those of normal stages in the middle of the column. 
Therefore, three different holdup values need to be defined in Aspen Plus, and each 
holdup has its own starting and ending stage. For example, given that the total stages 
are 95, the starting and ending stage for the top holdup is generally 1 to 1, while the 
starting and ending stage of the bottom holdup (i.e., reboiler) should be 95 to 95. The 
starting and ending stage for the middle stages holdup is 2 to 95. Building a specific 
code that allows the reactive stages specification in Aspen Plus during the optimization 
process is a challenging task, especially considering the variable overlap issue. It is 
necessary to ensure that when the total number of stages changes, the ending stage of 
the middle stages and the bottom stages changes accordingly. It is speculated that 
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previous studies may have chosen to optimize the reactive and total stages separately 
and we believe that it is due to the challenges in building such a code.

In this study, our goal is to propose an optimization procedure tailored for the RED system. It 
is essential to clarify that our aim is not to definitively claim that the optimization method we 
develop here is the ultimate solution providing a global optimum. Instead, our contribution lies 
in optimizing the RED system in a more precise (i.e., “correct”) manner. We achieve this by 
designing a specific algorithm capable of allowing the reactive stage to follow the total number 
of stages throughout the optimization process. This innovative approach eliminates the 
“variable overlap” problem, which is a departure from the commonly used methods in most 
existing studies. We believe that our proposed procedure has the potential to yield refined RED 
designs that closely mimic real-world conditions.
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Table 1. Summary of studies on RED for ternary azeotropic mixture

No.
System Algorithm Objective Include reactive stage 

as variable?
Reaction 

zone
Ref.

1 EA/Eth/Water GA Cost ✔ Partial [3]
2 THF/Eth/Water MOGA Cost ✔ Partial [1]
3 Tert-butyl 

alcohol(TBA)/Eth/Water
- -

4 THF/Eth/Water - -
5 Acetonitrile(ACN)/IPA/Water -

Cost

-

Whole 
column

[17]

6 TBA/Eth/Water MOPSO Cost ✔ Partial [18]
7 ACN/IPA/Water SIO Cost ✔ Partial [19]
8 EA/Eth/Water MOGA and 

NSGA-II
Cost, environment, and safety ✔ Partial [9]

9 IPA/Diisopropyl 
ether(DIPE)/Water

PSO Cost ✔ Partial [20]

10 THF/Eth/Water PSO Cost ✔ Partial [21]
11 Benzene/IPA/Water MOGA

NSGA II
Cost, environment, and 

thermodynamic efficiency
✔ Partial [5]

12 IPA/EA/Water PSO Cost ✔ Partial [8]
13 CY/IPA/Water SIO Cost - Whole 

column
[4]

14 TBA/Eth/Water SIO Cost, environment, and 
thermodynamic efficiency

✔ Partial [22]

15 IPA/EA/Water PSO Cost ✔ Partial [6]
16 ACN/IPA/Water NSGA-II Cost ✔ Partial [23]
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2.0. Methodology

The methodology employed in this study is illustrated in Figure 1. Initially, we chose two 
distinct DCRED configurations from previous research studies [3,17]. These configurations 
served as our base cases for subsequent comparisons. Next, we applied our newly developed 
optimization procedure to optimize the two case studies. Finally, we compared the optimized 
configurations to the base cases, evaluating them based on energy and economic indicators.

Figure 1. An overview of the methodology utilized in this study.

2.1. Description of base case

2.1.1. Case 1

Figure 2 depicts the reproduced DCRED process for the ternary azeotropic separation of EA, 
Eth, and water. This case study was chosen because it is one of the earliest work that 
demonstrated the use of DCRED. Note that in this case, the designated reaction zone spans 
from stage 11 to stage 41, as depicted in Figure 2. Our specific objective in this case is to 
examine the impact of appropriately configuring and optimizing the reaction to occur 
throughout the entire column. We aim to determine whether this adjustment leads to 
performance enhancements or introduces any potential adverse effects to the process. In Figure 
2, a 100 kmol hr-1 fresh feed containing 30 mol.% of EA, 20 mol.% of Eth, and 50 mol.% of 
water is fed into the REDC. To enable the necessary hydration of EO as per Eq. 1, it is 
necessary to introduce an equal amount of EO compared to the water in the fresh feed, which 
amounts to 50 kmol hr-1. A large amount of EG (225 kmol hr-1) is also added to the REDC to 
boost azeotropic separation. The distillate from the REDC should achieve a recovered EA 
purity of 99.64 mol.%. The remaining mixture of Eth and EG is directed to the solvent 
regeneration column (SRC), where recovered Eth with a purity level of 99.66 mol% is obtained 
as the distillate, and recovered EG with a purity level of 99.92 mol% is collected as the bottom 
product. Before being recirculated into the REDC, the regenerated EG undergoes a cooling 
process. Any surplus solvent within the system is removed through a purging mechanism.
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Figure 2. Flowsheet of DCRED for ternary azeotropic separation of EA/Eth/water reproduced 
from Ref. [3].

EO + Water→EG

𝑟1
𝑚𝑜𝑙

𝑠∗𝑐𝑚3 = 3.15 ×  109𝑒𝑥𝑝
―9547

𝑇 𝑥𝑤𝑎𝑡𝑒𝑟𝑥𝐸𝑂

(Eq. 1)

2.1.2. Case 2

The second case study was adopted from Ref. [17] for the ternary azeotropic separation of ACN, 
IPA, and water. The reason behind selecting this case study was twofold. Firstly, the original 
process developed by Ref. [17] already allowed for reactions to occur throughout the column, 
but it had not been optimized. Thus, we aimed to investigate the impact of optimization and 
assess if performance improvements were attainable. Secondly, this case study also represents 
one of the earliest instances where RED was employed for the separation of a ternary azeotropic 
mixture. The reproduced flowsheet is depicted in Figure 3. In this process, the REDC initially 
receives a fresh feed stream of 100 kmol hr-1, consisting of 30 mol. % ACN, 30 mol. % IPA, 
and 40 mol. % water. Identical to Case 1, it is necessary to provide an amount of EO (i.e., 40 
kmol hr-1) equivalent to that of water in the fresh feed to facilitate the EO hydration (Eq. 1). 
This balanced introduction ensures the complete elimination of water while generating 
sufficient EG to serve as a solvent for subsequent azeotropic separation within the same column. 
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To enhance the EG solvent quantity for effective azeotropic separation, an additional 90 kmol 
hr-1 of EG is introduced into the REDC. The objective for the REDC is to produce a distillate 
stream with a recovered ACN purity of 99.9 mol.%. The remaining mixture, comprising IPA 
and EG solvent, is directed to the SRC. Within the SRC, a distillate stream is obtained, 
containing recovered IPA at a purity of 99.9 mol.%, while the bottom product consists of EG 
with a purity of 99.94 mol.%. Prior to recycling back to the REDC, the regenerated EG 
undergoes a cooling and purging process, identical to Case 1.

Figure 3. Flowsheet of DCRED for ternary azeotropic separation of ACN/IPA/water 
reproduced from Ref. [17].

2.2. Proposed optimization procedure

Efficiently operating any industrial processes is crucial for maintaining competitiveness in the 
current process landscape, especially when dealing with low productivity. To address this, the 
optimization problem is defined for each process sequence, taking into account the specific 
goals, limitations, and design parameters involved. As a result, all design challenges are framed 
as an optimization stochastic problem with constraints.

In each case study, the primary goal is to minimize the TAC, which directly correlates 
with the heat duty, services, and column size. Achieving this objective is contingent upon 
meeting the necessary recoveries and purities in each product stream, that is to say:



9

min(𝑇𝐴𝐶) = 𝑓 ( 𝑁𝑡𝑛,𝑁𝑓𝑛,𝑅𝑟𝑛,𝐹𝑟𝑛,𝐷𝑐𝑛, 𝐻𝑢𝑛)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑚 ≥ 𝑥𝑚

(Eq. 2)

The optimization involves various parameters within the process. These include Ntn as the total 
column stages, Nfn representing feed stages in columns, Rrn denoting the reflux ratio, Frn 
signifying distillate fluxes, Dcn for column diameter, Hun as hold up, and ym and xm representing 
vectors for obtained and required component purities, respectively. Minimizing these 
parameters necessitates the manipulation of 15 continuous and discrete variables for each 
process route. It is crucial to note that, due to product stream flows being influenced by 
chemical reactions, the purities of key components in these streams must be accounted for as 
constraints in the optimization problem. The optimization and design of process routes are 
intricate, non-linear, and multivariable challenges, featuring both continuous and discrete 
design variables [24,25]. Moreover, the objective functions used in the optimization criteria 
can be nonconvex, potentially leading to the presence of local optima while adhering to certain 
constraints.

To address these complexities and optimize the process routes, we employed a 
stochastic optimization technique known as Differential Evolution with Tabu List (DETL). 
This is since stochastic optimization methods usually do not necessitate a precise starting point 
in the search. Unlike deterministic optimization techniques, which heavily depend on the initial 
guess to direct the search, stochastic optimization methods employ randomness to explore the 
search space more extensively. In particular, DETL method is designed to explore the search 
space more extensively, rather than being confined to a specific starting point. They employ 
mechanisms such as mutation, crossover, to explore different regions of the search space, even 
without a particularly good initial guess. The randomization inherent in this method allow to 
escape local optima and continue exploring the search space for better solutions. This method 
typically relies on convergence criteria based on the behavior of the objective function or the 
optimization process itself, rather than being heavily influenced by the initial guess. Other than 
that, stochastic optimization methods can work with black box or grey box models. In the 
particular case of this case study, this advantage allows not having to explicitly code the model 
to represent the process schemes. Thus, the Aspen Plus simulator is used so that the process 
model can be solved laterally. This implies that during the optimization process, multiple 
evaluations are performed on the process scheme that is modeled with all the complexity 
previously mentioned. Nonetheless, a consequence is that the computation times may increase 
significantly due to the multiple evaluations performed on the complex process scheme [26,27]. 
This prolonged convergence time is a direct result of the detailed evaluation of the complex 
system. Other drawbacks of DETL include the fact that the performance of DETL can be 
sensitive to parameter choices, including population size, crossover probability, and mutation 
factor. Fine-tuning these parameters for optimal performance can be time-consuming and 
computationally intensive.

As a historical note, Differential Evolution (DE) draws inspiration from Darwin’s 
natural selection theory, resembling GA with a significant difference, i.e., DE encodes decision 
variables as floating-point numbers, not bit strings. Srinivas and Rangaiah [28] demonstrated 
that integrating tabu search concepts could enhance the DE algorithm’s performance. Notably, 
the tabu list (TL) is utilized to prevent revisiting already explored regions in the search space, 
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thus minimizing unnecessary function evaluations. Building on this concept, Srinivas and 
Rangaiah [28] introduced the hybrid approach DETL, which combines traditional DE steps 
with TL and tabu checks to monitor evaluated points and avoid revisits during optimization. A 
convergence criterion based on the maximum number of generations is also implemented. A 
detailed description of the DETL algorithm is available in Ref. [28].

The implementation of this optimization approach involves a hybrid platform using 
Microsoft Excel and Aspen Plus. Decision variable vectors are transmitted from Microsoft 
Excel to Aspen Plus through Dynamic Data Exchange (DDE) via component object model 
(COM) technology. Particularly, COM is a fundamental technology in Microsoft Windows for 
software development. It enables interprocess communication and code reuse through a 
component-based architecture. Key aspects of COM include its language-agnostic nature, 
interface-based communication, object activation, lifetime management, and support for 
versioning and backward compatibility. In Microsoft Excel, these values are assigned to the 
process variables required by Aspen Plus. After simulation, Aspen Plus sends back the resulting 
vector to Microsoft Excel, where the objective function values are analyzed, and new decision 
variable values are proposed based on the chosen stochastic optimization method.

During the optimization process, the algorithm assigns a vector to all design variables, 
necessitating the generation of appropriate physical constraints within inner cycles. For 
instance, when the algorithm proposes a total stage count X and a feed stage Y, Y must logically 
be less than X for physical coherence. However, the algorithm may not inherently recognize 
the clear physical meanings of these variables, potentially leading to scenarios where Y exceeds 
X. Therefore, the coding of variable assignment must include necessary constraints associated 
with internal cycles and the variables proposed by the optimization algorithm to ensure proper 
physical significance and direct impact on the objective function and input-output readings. 
Throughout the optimization stage, an iterative process evaluates the process model using 
vectors containing the process design variables, resulting in the attainment of the objective 
function’s value associated with the optimized model. The coding methodology discriminates 
between vectors satisfying certain optimization problem constraints, typically linked to mass 
and energy balance, as well as product purities. Constraints related to process scheme topology, 
such as ensuring the feed stage value is less than the total stage count, can be established. 
Similarly, constraints can be coded to align the start and end of the reactive zone with specific 
column stages. Failure to meet these constraints results in the optimization method recognizing 
the variable vectors as unsuitable for the coded optimization problem.

To express the internal constraints associated with the process design within the coding 
of the optimization algorithm, especially when the value of one design variable depends on 
another in an internal cycle, one can mathematically describe this as follows:

1. Let us denote the vector of decision variables as x, which includes design variables and 
associated parameters. The optimization algorithm aims to minimize or maximize a set 
of objective functions f(x) based on these decision variables. The internal constraints 
are represented as equations that establish relationships among the decision variables. 
Specifically, when one design variable 𝑥𝑖 influences another design variable 𝑥𝑗, an 
internal constraint is formed. This can be mathematically expressed as:
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𝑥𝑗 = 𝑔(𝑥𝑖) (Eq. 3)

where 𝑥𝑖 is one of the design variables whose value is determined by the optimization 
algorithm, 𝑥𝑗 is another design variable whose value is dependent on 𝑥𝑖, and 𝑔(𝑥𝑖) is a 
function that relates the value of 𝑥𝑖 to the value of 𝑥𝑗. Thus, the optimization algorithm 
assigns values to the design variables, which include 𝑥𝑖. This assignment is done 
iteratively as part of the optimization process.

2. Within the optimization algorithm, there exists an internal loop or iterative process that 
adjusts the values of the design variables, including 𝑥𝑖 and subsequently 𝑥𝑗. This loop 
continues until convergence is achieved, ensuring that the internal constraint, 
represented by the Eq. 3 is satisfied.

3. The internal loop within the optimization algorithm operates iteratively, adjusting the 
values of 𝑥𝑖 and, consequently, recalculating the value of 𝑥𝑗 using the relationship 
defined by the function 𝑔(𝑥𝑖). The internal loop continues until a predefined 
convergence criterion is met, indicating that the internal constraints are satisfied, and 
the values of the design variables, including 𝑥𝑖 and 𝑥𝑗, have reached optimal or 
acceptable values.

The above mathematical description outlines the process of incorporating internal constraints 
associated with the process design within the optimization algorithm’s coding. It emphasizes 
the dependencies between design variables and the need for an iterative process to ensure these 
internal constraints are met during the optimization process. In this way, it is possible to rectify 
and indirectly reassign values of design variables using some previously proposed by the 
optimization algorithm, and that these variables have a direct impact on the value of the 
objective function so that they have an impact on the generation of a new population of vectors 
for the next generation to be evaluated. This consideration can be applied in the assignment of 
values for the feeding stage, the specification of the start and end of the reactive column section, 
and that this is in accordance to the stages with an adequate holdup value, etc. By doing so, our 
optimization focuses on the total number of stages while ensuring that the reactive stage 
corresponds to this total, a deviation from many existing studies. These internal constraints 
play a pivotal role in mitigating the “variable overlap” issue, a deviation from the prevalent 
methods in current research. We are confident that our proposed procedure holds the potential 
to yield optimized RED designs that closely emulate real-world conditions. The overall 
optimization framework is graphically illustrated in Figure 4.
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Figure 4. Graphical representation of the overall optimization framework.

For the specific process routes analyzed in this study, we utilized the following parameters for 
the DETL method: 200 individuals, 300 generations, a tabu list comprising 50% of the total 
individuals, a tabu radius of 0.0000025, and crossover and mutation fractions set at 0.80 and 
0.6, respectively. These parameter settings were determined through a tuning process involving 
preliminary calculations, where different combinations of individuals and generations were 
tested to identify the optimal parameters that would yield the best convergence performance 
for DETL. These parameters are also identical to those recommended by Srinivas and Rangaiah  
[29], which have been successfully tested in several case studies with a similar complexity 
[30,31].

To calculate the TAC, which serves as the objective function, we employed the method 
originally developed by Guthrie (1969) and later modified by Ulrich (1984). This method 
estimates the cost of an industrial plant by segmenting it into various units, utilizing equations 
provided by Turton et al. (2008) for an approximate cost assessment of the process using Eq. 
4, as follows:
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𝑇𝐴𝐶 =  
∑𝑛

𝑖=1 𝐶𝑇𝑀,𝑖

𝑛 +  
𝑛

𝑗=1
𝐶𝑢𝑡,𝑗

(Eq. 4)

In this context, TAC represents the comprehensive yearly expenses, CTM stands for the initial 
capital expenditure of the facility, n corresponds to the period required for financial return, and 
Cut designates the expenditure linked to services.

3.0. Results and discussion

3.1. Case 1

Figure 5. Modified flowsheet for Case 1.

Figure 5 presents the modified base case for Case 1. Here, we have adjusted the flowsheet so 
that the reaction occurs throughout the entire column, as opposed to being limited to specific 
sections as in the original base case (Figure 2). It is important to emphasize that we made this 
modification to facilitate the use of this case as an initial configuration for the subsequent 
optimization process. Alongside enabling the reaction throughout the column, another 
significant alteration involved the liquid holdup. We must acknowledge that we are uncertain 
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about how the liquid holdup was calculated in the base case [3] as the specific details, to our 
knowledge, were not provided. In the original base case, the holdup was reported in terms of 
kmol, whereas the convention we commonly encounter is reporting it in m3. We want to clarify 
that we are not implying any error in their approach, as we understand that Aspen Plus can 
represent holdup in kmol as well. Our intention is simply to share that the more common 
reporting convention we have encountered is usually in m3. Additionally, we noticed that 
previous authors expressed gratitude to a reviewer for suggesting the holdup calculation, yet 
the formula was not provided in the literature. Consequently, we decided to adjust the liquid 
holdup using the formula suggested by Ref. [17], which reports it in m3.

Following these two significant modifications (i.e., extending the reaction zone and 
modifying the holdup volume), it became necessary to make adjustments to the column 
configuration to achieve the desired product purities. Firstly, the total number of stages in the 
REDC remain unchanged  (42 stages). We relocated the fresh feed location, increasing it in the 
modified case to the 33th stage, in contrast to the 31st stage in the original base case. The EO 
feed stage was remained at 38th stage, and the solvent inlet location was moved upwards from 
the 9th stage to the 4th stage. These alterations in the column topology resulted in an increase in 
reboiler duty in REDC by approximately 170.85%. In the case of the SRC, the total number of 
stages and feed location were kept constant at 11 stages and 6th stage. These changes in column 
configuration led to an increase in the SRC reboiler duty by approximately 18.97%, rising from 
1044.96kW to 1243.21kW. Altogether, these modifications translate to an increase in TAC by 
about 16% from $0.917 to $1.066 million. Subsequently, the modified base case (Figure 5) 
will undergo process optimization using our proposed procedure to determine the optimal 
column configuration and further reduce the TAC.

Figure 6 illustrates the results obtained from optimizing Case 1, and the optimized 
process configuration is shown in Figure 7. This optimization process spanned approximately 
4 days, with the TAC stabilizing at around $1.033 million after roughly 20,000 iterations. In 
terms of total energy consumption, the optimized configuration delivers 1304.55kW. These 
outcomes signify an 3.1% decrease in TAC and an 5.88% decrease in total energy consumption 
when compared to the modified base case (Figure 5).
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Figure 6. Optimization result for Case 1.
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Figure 7. Optimized flowsheet for Case 1.

In terms of column configuration, a thorough comparison unveiled that the optimized REDC 
demanded higher stages, specifically 50 stages (Figure 7), as opposed to the 42 stages required 
in the modified base case (Figure 5). This reduction translated into a substantial increase in 
total capital cost (TCC). Notably, the optimized REDC positioned its fresh feed stage higher, 
specifically at the 20th stage, whereas the modified base case had it at the 33rd stage. A similar 
trend was observed for the reactant feed stage, with the optimized REDC locating it at a higher 
stage (32nd stage) compared to the modified base case at the 38th stage. Concerning the solvent 
feed location, it was remained from at the 4th stage after optimization. Regarding reboiler duty, 
the optimized REDC exhibited a substantial increase of 22.98%, decreasing from 142.874kW 
in the modified base case (Figure 5) to 110.04kW (Figure 7). This reduction significantly 
contributed to the overall decrease in total operating cost (TOC). Note that both the optimized 
and base cases maintained nearly the same reboiler temperature range (i.e., below 433K). 
Consequently, both configurations utilized the same grade of heating utility, and this factor did 
not contribute to the reduction in TOC. This contrasts with some existing studies where 
variations in steam grade played a significant role in TOC reduction [35,36].

As for the SRC, it was observed that the optimized configuration required fewer total 
stage, totaling 10 stages, compared to the modified base case with 11 stages. Additionally, the 
optimized SRC featured a smaller diameter, approximately 35.23% smaller at 0.5066m, 
compared to the modified base case at 0.7821m. Both the decrease in the total number of stages 
and column diameter resulted in an decrease in the TCC. Concerning the feed location, it was 
positioned higher, specifically at the 5th stage, in contrast to the modified base case where it 
was at the 6th stage. Lastly, regarding reboiler duty, there was a significant decrease of 3.92%, 
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rising from 1243.21kW in the modified base case to 1194.51kW in the optimized configuration. 
We believe that this decrease had contributed significantly to the reduction in TOC.

Here, it is interesting to also compare the column configuration between the optimized 
case (Figure 7) against the original base case (Figure 2) as they exhibit distinct features in 
terms of the reaction zone and how the holdup was computed. Upon a detailed comparison 
between Figure 7 and Figure 2, it was observed that the REDC in the optimized scenario 
required a higher number of stages, specifically 50 stages in Figure 7, compared to the 42 
stages in the original configuration (Figure 2). Notably, the fresh feed stage of the REDC 
occurred in the 31st stage before optimization, whereas after optimization, it moved up to the 
20th stage. Furthermore, in the original base case scenario, EO was introduced into the REDC 
at the 38th stage, while after optimization, EO was introduced at the 32nd stage. The recycled 
solvent, before optimization, entered the system at stage 9, whereas after optimization, it 
entered at stage 4. In terms of the reboiler duty, it is noteworthy that the optimized REDC 
necessitates almost twice the duty compared to the original base case. Since both configurations 
utilized the same grade of heating utility, the contribution to the TOC stemming from the 
reboiler duty remained virtually unchanged between the optimized case (Figure 7) and the 
original base case (Figure 2). In terms of the SRC column configuration, the optimization 
results revealed several noteworthy changes. The optimized SRC, in particular, required one 
less number of stages, totaling 10 stages, compared to the original base case with 11 stages. As 
for the feed stage entering SRC, the original base case placed the feed stage at the 6th stage 
while in the optimized case, the feed location to SRT shifted one stage upward to the 5th stage. 
The SRC reboiler duty experienced a substantial increase of 14.3%, rising from 1044.96kW to 
1194.51kW.

Overall, we illustrated here a scenario where the original base case featured a confined 
reaction limited to a specific zone rather than spanning the entire column. Additionally, the 
method used for calculating the holdup differed slightly from common practices outlined in 
existing literature. Therefore, certain modifications were necessary to ensure that the reaction 
was accurately occurring throughout the entire column, aligning with the nature of an 
uncatalyzed reaction. We believe that such simulations better reflect real-world scenarios. Due 
to these modifications, the TAC of the optimized case has increased by approximately 13% to 
$1.033 million (Figure 7), compared to the original case at $0.917 million (Figure 2). It may 
seem perplexing to observe an increase in TAC after optimization compared to the original 
base case. This discrepancy arises because the original configuration (Figure 2) was limited to 
a specific zone, necessitating modifications to enable reactions throughout the entire column. 
Consequently, after this modification (Figure 4), the TAC deviates from the original case at 
$0.917 million. This divergence is expected since the modified case (Figure 4) undergoes a 
topological change in column configuration, differing from the base case (Figure 2).

Another possible question that may arise is whether the improvement (if any) is because 
of the incorporation of all stages as reactive stages or solely because of the use of a (better) 
optimization techniques. This is since the original case (Figure 2) was optimized using a 
genetic algorithm, whereas we employed the DETL algorithm for optimization in this work. 
Firstly, our perspective is that optimization does not necessarily guarantee enhancement, as we 
demonstrated here in Case 1. Hence, comparing scenarios before and after optimization 
becomes challenging due to the inherent differences resulting from model modifications aimed 
at enhancing simulation realism. One should also remember that our objective is not solely 
focused on achieving superior outcomes but rather on proposing a more accurate optimization 
approach reflecting real-world scenarios. Secondly, out of curiosity, we attempted to optimize 
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the original Case 1 (Figure 2) using DETL, with the corresponding flowsheet provided in the 
Supporting Information (Figure S1). It was found that the calculated TAC was slightly lower 
than that of the original Case 1 (Figure 2), by just under 1%. This marginal improvement is 
expected, considering the original Case 1 has already been optimized using a genetic algorithm. 
Therefore, there appears to be limited room for further improvement, even with another 
alternative optimization algorithm. Comparing the optimized case with reactions spanning 
throughout the entire column (Figure 7) and the optimized case with reactions confined to a 
specific section (Figure S1), it is evident that the former yields a significantly higher TAC. 
This again reflects the distinct nature of Figure 2 (or Figure S1) and Figure 7, precluding a 
fair comparison between them. Importantly, this also suggests that the choice of optimization 
algorithm plays a minimal role in our study, at least from our perspective and findings.

In the next case, we will explore into another intriguing scenario where the reaction was 
initially configured to occur throughout the column but has not yet been optimize. Unlike Case 
1, where modifications were needed to configure the reaction, Case 2 requires no such 
adjustments. Our objective here is to scrutinize the impact of optimization and evaluate whether 
it can yield performance improvements.

3.2. Case 2

Figure 8 presents the outcomes of the optimization process for Case 2, while the optimized 
process configuration is depicted in Figure 9. Here, it is worth noting that the reproduced base 
case shown in Figure 3 can serve as the initial case without any alterations because the original 
setup already allowed the reaction to occur throughout the column. The optimization process 
took about 4 days, with the TAC stabilizing at about $ 0.944 million after approximately 30,000 
iterations. As for the total energy consumption, the optimized configuration operates at 1061 
kW. These results indicate a notable 3.87% reduction in TAC and a substantial 7.71% decrease 
in total energy consumption when compared to the replicated base case (Figure 3).
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Figure 8. Optimization result for Case 2.
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Figure 9. Optimized flowsheet for Case 2.

Regarding column configuration, a meticulous comparison revealed that the optimized REDC 
required fewer stages, specifically 76 stages (Figure 9), in contrast to the 78 stages in the base 
case (Figure 3). This reduction resulted in a marginal decrease in the TCC. Notably, the 
optimized REDC positioned its fresh feed stage higher at the 29th stage, while the base case 
had it at the 35th stage. A similar trend was observed for the reactant feed stage, with the 
optimized REDC locating it at a higher stage (50th stage) relative to the base case at 55th stage. 
Regarding reboiler duty, the optimized REDC (Figure 9) exhibited a significant reduction of 
37.3%, decreasing from 239.8kW in the base case (Figure 3) to 150.344kW. This reduction 
translated to a lower TOC. It is noteworthy that, similar to Case 1, both the optimized and 
modified base cases maintained nearly the same reboiler temperature range (i.e., below 433K). 
Consequently, both configurations utilized the same grade of heating utility, and this factor did 
not contribute to the reduction in TOC.

For the SRC, it was noted that the optimized configuration required two more total 
stages, totaling 12 stages, compared to the base case with 10 stages. However, the optimized 
SRC featured a smaller diameter, approximately 18% smaller at 0.5069m, compared to the 
base case at 0.62m. This suggests a potential trade-off between the reduction in TCC due to the 
smaller diameter and the increase in TCC due to the addition of two extra stages. In terms of 
feed location, an opposite trend to that observed in the REDC became evident in the SRC. In 
the optimized configuration, the feed location was shifted downwards, precisely to the 7th stage, 
while the base case had it positioned at the 5th stage. Lastly, regarding reboiler duty, there was 
only a marginal increase of less than 0.1%, rising from 910.3kW in the base case to 911.03kW 
in the optimized configuration. We believe that this slight increase had an insignificant impact 
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on the overall TOC rise. The reboiler temperature remained identical in both the optimized and 
base cases, resulting in no variations in the heating utility grade, mirroring the observations 
made in the REDC.

Altogether, our simulations suggest that the decrease in reboiler energy consumption in 
the REDC and the decrease in the total number of stages in the REDC contributed to the overall 
reduction in the TAC. This is since there is not much reduction seen in the reboiler energy 
consumption of the SRC and as mentioned earlier, there may be a potential trade-off between 
the reduction in TCC due to the smaller diameter and the increase in TCC due to the addition 
of two extra stages. Hence, we believe that the changes in TCC and TOC in the SRC do not 
play a significant role in the overall reduction in TAC. We understand that the 3.87% reduction 
in TAC may appear minimal, and its contribution seems limited compared to the base case. 
However, we would like to emphasize that the optimized configuration presented in Figure 9 
represents a more precise and realistic approach closely mimicking real-world conditions. The 
optimization algorithm we developed here allows the reactive stage to follow the total number 
of stages throughout the optimization process, effectively eliminating the “variable overlap” 
problem, which departs from the commonly used methods in most existing studies.

4.0. Conclusion

In conclusion, we addresses two critical challenges related to the optimization of RED systems 
for ternary azeotropic mixtures. Our comprehensive analysis of existing studies highlighted a 
common emphasis on minimum cost (TAC) as the objective function and the utilization of 
various optimization algorithms and variables. Notably, the inclusion of reactive stages as 
optimization variables in most studies seems unnecessary, given that the EO hydration reaction 
is expected to occur throughout the entire column. This paper proposes a novel optimization 
procedure tailored for the RED system, specifically designed to overcome the “variable overlap” 
issue present in many existing methods. Our contribution aims to optimize the RED system 
more accurately, ensuring that reactive stages align with the total number of stages throughout 
the optimization process. While we do not claim to provide a global optimum, our innovative 
approach promises to yield refined RED designs that closely resemble real-world conditions. 
Our proposed optimization procedure is exemplified through two distinct case studies. In Case 
1, we ventured into a scenario where the original process already designated a specific reaction 
zone. In this case, it is necessary to modify the original process so that the reaction can take 
place throughout the column, prior to optimizing it. Our analysis sought to unveil whether this 
adjustment would yield improved performance or potentially introduce adverse effects. Overall, 
it was found that the TAC of the optimized configuration increased by approximately 13% 
compared to the original case. This increase was due to the optimization approach that allowed 
the reaction to take place throughout the entire column, in contrast to the base case where it did 
not. In Case 2, we examined an alternative scenario where the reaction was distributed 
throughout the column without preceding optimization, and we noted only a slight reduction 
in TAC, approximately 3.87%. Overall, both optimized configurations offer a more precise and 
realistic approach that closely mimics real-world conditions. They address the “variable 
overlap” problem, departing from the commonly used methods in most existing studies.
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Nomenclature

Abbreviation

ACN Acetonitrile

COM Component object model

CY Cyclohexane

DCRED Double column reactive-extractive distillation

DDE Dynamic Data Exchange

DE Differential Evolution

DETL Differential Evolution with Tabu List

DIPE Diisopropyl ether (DIPE)

DWRED Dividing-wall reactive-extractive distillation

EA Ethyl acetate

ED Extractive distillation
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EG Ethylene glycol

EO Ethylene oxide

Eth Ethanol

GA Genetic algorithm 

IPA Isopropanol

MOGA Multi-objective genetic algorithm

MOPSO Multi-objective particle swarm optimization

NSGA-II Non-dominated sorting genetic algorithm II

PSD Pressure-swing distillation

PSO Particle swarm optimization

RD Reactive distillation

RED Reactive-extractive distillation

REDC Reactive-extractive distillation column

SIO Sequential iterative optimization

SRC Solvent regeneration column

SS-RED Side-stream reactive-extractive distillation

TAC Total annual cost

TBA Tert-butyl alcohol
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TCC Total capital cost

TCRED Three column reactive-extractive distillation

TC-RED Thermally coupled reactive-extractive distillation

THF Tetrahydrofuran

TL Tabu list

TOC Total operational cost
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Highlights

• Omission of reactive stage as optimization variables
• Provides a more realistic approach for optimizing reactive-extractive distillation
• Allow ethylene oxide reaction to take place throughout the column
• Align total stages with reactive stages during optimization process
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